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Abstract
A vorticity growth mechanism leading to the creation of two-dimensional
inviscid vortices is presented. The vorticity amplification saturates to values
two orders of magnitude larger than those of the initial disturbance. The
growth occurs because of a resonance with a Landau pole of the system
and strongly depends on the value of the initial perturbation at the point
of inflection of the equilibrium profile. These findings are obtained by
numerically solving the initial-value problem associated with the Rayleigh
equation. Numerical solution of the corresponding eigenvalue problem and
direct numerical computation of the Landau pole give consistent results.

PACS numbers: 47.15.Fe, 47.15.ki, 47.20.Ft, 47.32.C

1. Introduction

Many flows occurring in fluid systems can be treated as two dimensional [1–3]. These flows
often organize in one or more vortices. One thoroughly studied example is represented by the
inviscid decay of asymmetries on a stable circular vortex [1, 4, 5]. In [1] this phenomenon
was studied both experimentally and theoretically by comparing data relative to magnetized
electron plasmas in a cylindrical Penning trap with results based on the analysis of the linearized
2D Euler equations. It was shown that the initial stage of exponential decay of asymmetries
in experiments is governed by linear theory, while over longer times nonlinear effects emerge.

The linear decay rate is given by the imaginary part of a so-called Landau pole. A Landau
pole is a complex frequency cL at which the temporal Laplace transform of the streamfunction
becomes singular [4, 6]: its value depends only on the equilibrium velocity profile and not on
the initial perturbation. In [1] it was shown as well that, while the disturbance streamfunction
decays exponentially in the initial phase, a vorticity perturbation grows in the neighbourhood
of a critical radius rc dependent on the frequency Re(cL) of the Landau pole. Eventually,
the vorticity bump growth saturates to values comprised between 10−2 and 10−1 of the initial
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vorticity perturbation peak. This saturated growth mechanism will be important for the present
study.

Other natural systems whose dynamics seems to be ruled by approximately 2D inviscid
flows are given by the atmospheres of outer planets. These atmospheres are characterized by
zonal winds, traditionally seen as confined to a thin layer near the cloud tops, and dominated
by large vortical structures such as the Great Red Spot in Jupiter. In this planet and Saturn
zonal winds strongly vary with latitude and have a marked non-monotonic dependence on it
with multiple maxima and minima [3]. Our goal in the present study is to investigate the effect
of non-monotonicity of flow profiles on the evolution of disturbances.

Mathematically, inviscid flows are described by the Euler equations. Their evolution in a
linear regime is described by the Rayleigh equation, which constitutes the starting point of the
stability analysis of shear flows. Before introducing our main results we briefly summarize
main facts about the mathematical structure of the Rayleigh equation.

The eigenspectrum of the Rayleigh equation has a discrete and a continuous component.
The first is governed by the Rayleigh inflection point theorem [7]—a necessary condition
for instability is the presence of an inflection point in the velocity profile. An important
generalization of this theorem was due to Fjørtoft [8], who restricted the class of possibly
unstable flows. The continuous branch was shown to be stable [9–11] for monotonic flow
profiles. A rigorous treatment discussing the contribution of the continuous spectrum in the
presence of non-monotonic profiles has never been given.

Smith and Rosenbluth [2] showed, however, that in a setting similar to the Rayleigh
equation, 2D inviscid vorticity equation in a cylindrical geometry, and for angular velocity
profiles with a stationary point, the azimuthal wave number m = 1 mode grows algebraically
as the square root of time. The origin of this instability, associated with the continuous
spectrum of the evolution operator, stays in phase coherence.

The Rayleigh equation has been thoroughly studied for monotonic flow profiles; in that
context, unstable solutions have a global character and a clear exponential evolution.

In this paper, it will be shown how a departure from the monotonic assumption can lead to
modifications of the classical paradigm. We will present a solution of the initial-value problem
associated with the Rayleigh equation relative to a non-monotonic velocity equilibrium profile
of the type f (y) = a +y3 −by (a and b are positive, real parameters) directed along the x-axis
in a channel [−1, 1]. The vorticity evolution is characterized by a localized and slow growth
which eventually saturates to values of order 102 with respect to the initial vorticity perturbation
peak, in contrast with the common understanding of traditional inflectional instabilities. The
localized growth occurs at points where the perturbation vorticity oscillates in resonance with
the value of the flow at the inflection point, ys . Moreover, it strongly depends on the initial
value of the perturbation at ys—the vanishing of the initial disturbance at ys suppresses the
growth.

We chose the class of profiles f (y) = a + y3 − by because it represents the simplest
non-monotonic flow endowed with a maximum and a minimum. We preferred a polynomial
equilibrium with respect to sinusoidal flows of the type sin βy (where β is a real number) for
two reasons. The first is given by the fact that sinusoidal profiles have been studied and shown
to lead to violent global exponential instabilities of the Kelvin–Helmholtz type, while we found
that the polynomial profile under study, in spite of the fact that satisfies the Rayleigh–Fjørtoft
necessary condition for instability, it is not subject to fast exponential instabilities for any
value of the wave number k for b < 0.85 (for b > 0.85 global exponential growth occurs for
appropriate values of k). The second is that, in the polynomial profile, points yp for which
holds the relation f (yp) = f (ys) are not inflection points themselves as it occurs in sinusoidal
profiles, a condition which appears too restrictive.
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We observed as well that, analogously to the findings in [1], the growth of vorticity
in the resonant layer is accompanied by the global exponential decay of the disturbance
streamfunction. This brings us to conclude that the mechanism underlying the saturated
growth of vorticity is essentially the same found in [1], but much stronger. Mathematically,
a Landau pole of frequency Re(cL) causes growth of an initial vorticity perturbation with
expansion coefficients, calculated with respect to the eigenfunctions of the system, peaked
around Re(cL).

2. Initial-value problem

Let us consider an inviscid incompressible fluid. This system is described by Euler equations

∇ · V = 0, (1)

∂tV + V ·∇V = −∇P, (2)

where V and P are the velocity and pressure fields respectively. By taking the curl of
equation (2) we obtain the vorticity equation

∂tΩ − ∇ × (V × Ω) = 0, (3)

where Ω = ∇ × V is the vorticity. Considering two-dimensional flows and assuming a
symmetry with respect to the z component, we can express the velocity field in terms of the
stream function � as

V = ∇� × ez, (4)

where ez is a unit vector normal to the plane of the flow. The vorticity is parallel to ez and
is related to the stream function via the Poisson equation � = −�� (� is the Laplacian).
Substituting (4) into (3) gives

∂t� + V ·∇� = 0. (5)

By decomposing stream function, velocity and vorticity fields as

� = �0 + φ, V = V0 + v, � = �0 + ω, (6)

where �0, V0 and �0 represent the equilibrium and φ, v and ω the perturbation fields,
equation (5) can be linearized to give

∂tω + V0 ·∇ω + v · ∇�0 = 0. (7)

Assuming a parallel equilibrium flow of the form V0 = (−f (y), 0, 0), equation (7) becomes

(∂t − f (y)∂x)�φ = −f ′′(y)∂xφ, (8)

where ′ = ∂y . Since the ambient field is homogeneous with respect to x, we can decompose φ

into Fourier modes proportional to eikx . Writing ∂x = ik with a good quantum number k (in
what follows k > 0) the Laplacian becomes � = ∂2

y − k2 and equation (8) translates as

[∂t − ikf (y)]�φ = −ikf ′′(y)φ, (9)

which is the celebrated Rayleigh equation with boundary conditions φ(−1) = φ(+1) = 0.
By inverting the Laplacian operator � in [−1, 1], with φ vanishing at the boundary, we

can express the stream function in terms of the vorticity [12] with

φ = −�−1ω = −
∫ 1

−1
G(y, ȳ)ω(ȳ, t) dȳ, (10)

3
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Figure 1. Real part of the disturbance at t = 50 for f (y) = y3 − 0.49y and ω(y, 0) = cos(y).

where

G(y, ȳ) = −

⎧⎪⎪⎨
⎪⎪⎩

sinh[k(1 + y)]sinh[k(1 − ȳ)]

k sinh(2k)
(−1 � y � ȳ)

sinh[k(1 − y)]sinh[k(1 + ȳ)]

k sinh(2k)
(ȳ � y � 1).

(11)

By substituting (10) into (9) we have

[∂t − ikf (y)]ω = −ikf ′′(y)

∫ 1

−1
G(y, ȳ)ω(ȳ, t) dȳ. (12)

We investigated the stability of the above equation for the class of non-monotonic profiles
f (y) = a + y3 − by (a and b are positive, real parameters). Numerical time integration of
equation (12) has been carried out by means of a second-order Runge–Kutta routine, while
the spatial integral on the right-hand side of (12) has been computed by Simpson integration
evaluating the integrand at N points (for the present simulations N = 2001).

The numerical solution breaks down after a time τ ∼ 2π
C

, where C = maxy∈[−1,1]

|kf ′(y)�y| (�y = 2
N−1 is the grid-point spacing). This happens because, for t > τ , the

variation of ω in y becomes so fast that the numerical estimate of the integral on the right-hand
side of equation (12) diverges from the exact value.

The integration scheme has been tested for various profiles (sin βy, Poiseuille and others)
and has led to results in complete agreement with the existing literature. Moreover, the
results of the numerical integration were found to be independent on the spatial and temporal
discretizations. Spatially, results obtained for N = 1001, 2001 and 4001 are identical.
Temporally, increasing the time resolution by a factor 10 did not lead to any modification
of the results. We as well checked our program by upgrading the second-order Runge–Kutta
routine to a fourth-order Runge–Kutta and by changing Simpson with Gauss integration for
the computation of the space integral in (12). No appreciable changes were found.

In this section, we will present the results obtained for a = 0 and b = 0.49 (i.e. the profile
f (y) = y3 −0.49y), while their interpretation will be given in the following section by means
of eigenspectrum analysis. Similar results are obtained for different values of a and b. In all
simulations below we consider for the wave number the value k = 2, since around this value
fast growth of disturbances was noted.

Initial conditions have a very strong effect on the observed growth. We consider first the
initial perturbation ω(y, 0) = cos(y). After an initial phase where the position yp of the peaks
of the solution varies (figures 1 and 2), at times t ∼ 300, yp tunes around the values ±0.7 and
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Figure 2. Imaginary part of the disturbance at t = 50 for f (y) = y3−0.49y and ω(y, 0) = cos(y).

Figure 3. Imaginary part of the disturbance at t = 800 for f (y) = y3 − 0.49y and
ω(y, 0) = cos(y).

there it stays (figures 3 and 4). To be precise, the imaginary part of the solution ωi has maxima
at ±0.7 and the real part ωr has it at ±0.699. We have noted that for any value of N,ωr has
maxima at the points ±(0.7 − 2/(N − 1)). This suggests that the tiny discrepancy between
the position of the peaks for ωi and ωr is a result of the discretization procedure implicit in the
numerical solution and that, therefore, in the continuum limit the peaks of ωr occur as well
at ±0.7. The position yp of the peaks is an important aspect of the present growth because it
suggests their resonance with the point ys = 0, where the profile f (y) possesses an inflection
point (f ′′(ys) = 0); in fact in yp we have f (yp) = f (ys). This is confirmed by simulations
carried out for different values of a and b. The growth is localized in a neighbourhood of
yp, while outside this region only oscillations pertain. The growth is slow and saturates for
t → ∞ to values ∼90. In figure 5 we present the time evolution of ωi at the resonant point yp.
The graph suggests that in the solution there is no phase dependence of the type eikf (y)t . This
is understandable if we consider that f (yp) = 0. To check this fact we carried out simulations
for the profile f (y) = 1 + y3 − 0.49y. The results confirm the above-exposed behaviour with
the addition of a phase dependence of the type eikf (yp)t at yp.

The characterizing features of the present growth are quite distant from the usual picture
regarding inflectional instabilities, which arise in the context of the Rayleigh equation. Slow
growth and creation of localized structures counterpose to fast exponential time divergence
and globally evolving solutions.
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Figure 4. Absolute value of the disturbance vorticity at t = 800 for f (y) = y3 − 0.49y and
ω(y, 0) = cos(y).

0 500 1000 1500 2000
0

50

100

t

ω
i

Figure 5. Evolution of the imaginary part of the disturbance vorticity at y = −0.7 for
f (y) = y3 − 0.49y and ω(y, 0) = cos(y).

Another peculiar feature of the present solution is represented by its critical dependence
on the initial condition. Precisely, the growth is affected by the value of the initial perturbation
at the inflection point. We carried out simulations relative to many initial conditions satisfying
ω(ys, 0) = 0, all leading to the same type of behaviour. In figure 6 we present the case
ω(y, 0) = sin(y). It is evident that the growth is essentially suppressed. For t = 800 a
growing structure is still present at yp, but its size is drastically reduced in comparison to the
solution pertaining to an initial condition with ω(ys, 0) �= 0. We note as well that, for an
antisymmetric initial condition, ωi becomes a symmetric function in [−1, 1]. In this section,
for sake of brevity, we presented the evolution of the imaginary part of the solution. The real
part of the vorticity, ωr , shows analogous features. The only significant difference is that, for
the profile f (y) = y3 −0.49y, ωr is symmetric in [−1, 1] for even ω(y, 0) and antisymmetric
for odd ω(y, 0).

To gain a better insight on the mechanism responsible for the present growth we studied
the evolution of the perturbation streamfunction. Results are given in figures 7 and 8, where
the evolution of the real part of the streamfunction is presented. They clearly show its
global exponential decay. For the profile y3 − 0.49y the decay is not phase dependent. The
imaginary part of the streamfunction shows an analogous behaviour and therefore we decided
not to present the relative figures.

6
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Figure 6. Imaginary part of the disturbance at t = 800 for f (y) = y3−0.49y and ω(y, 0) = sin(y).

Figure 7. Global evolution of the real part of the streamfunction for f (y) = y3 − 0.49y and
ω(y, 0) = cos(y).

Figure 8. Evolution of the real part of the streamfunction at y = 0 for f (y) = y3 − 0.49y and
ω(y, 0) = cos(y).

The picture which arises from these results is consistent with the mechanism found in [1],
where decay of the disturbance streamfunction occurred in combination with the formation of
a vorticity bump at the resonant layer yc given by the relation kf (yc) = Re(cL), where cL is
the complex frequency (Landau pole) governing the streamfunction evolution.

7
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To ascertain whether the decay of the streamfunction is due to a Landau pole, we carried
out simulations relative to initial conditions of the type ω(y, 0) = cosp(y) up to p = 5. For
all the cases the decay rate for the streamfunction turned out to be Im(cL) ∼ 0.003 04. This
shows that the decay rate is independent on the details of the initial vorticity disturbance. This
is a feature which characterizes Landau poles, whose value depends only on the equilibrium
profile.

A direct numerical computation of the Landau pole will be performed in section 4. The
results will confirm what found above.

3. Eigenspectrum analysis

To interpret the results obtained in the previous section it is beneficial to perform an eigenmode
analysis of equation (12). We will rely on the methods described in [1, 13], where the Rayleigh
equation in cylindrical coordinates was studied. Assuming solutions of the type ω = ξ(y) eict ,
equation (12) becomes

cξ(y) = kf (y)ξ − kf ′′(y)

∫ 1

−1
G(y, ȳ)ξ(ȳ) dȳ ≡ B[ξ ]. (13)

The spectrum of the operator B has a discrete and a continuous component. The continuous
component is given by the purely real eigenfrequencies in the range

min
y∈[−1,1]

(kf (y)) < c < max
y∈[−1,1]

(kf (y)). (14)

We recall here that, in the usual understanding, eigenfunctions relative to discrete eigenvalues
are spatially smooth, while those relative to continuum eigenvalues are singular.

Eigenmode analysis was carried out numerically. We followed [13] and discretized the
spatial coordinate y into N points in [−1, 1]. This converts the operator B into an N × N

matrix. We computed eigenvalues and eigenvectors of both B and its transpose BT . We
denote ξ as an eigenvector of B and c as its eigenvalue. ξT and cT denote eigenvector and
eigenvalue of BT . Eigenvectors are normalized to unity with respect to the Euclidean norm( ∫ 1

−1 ξ ∗ξ dy = 1
)
. The set of eigenvalues for B and BT is the same, but the eigenvectors are

not equal. They, however, enjoy the property

〈ξ, ξT 〉 = 0 if c �= c∗
T , (15)

where

〈g, h〉 =
N∑

i=1

g∗(yi)h(yi). (16)

We assumed that the vorticity perturbation can be approximated by the expansion

ω(yi, t) =
N∑

j=1

Ajξj (yi) eicj t , (17)

where ξj and cj represent the j th eigenvector and eigenvalue of B.
This assumption is arbitrary since there is no proof that eigenvectors of B form a complete

system. Furthermore we stress that expansion (17) is by no means a spectral decomposition
of ω, but just a numerical approximation. However, we will see that it leads to results in close
agreement with those obtained in the previous section. The coefficients Aj can be calculated
from

Aj = 〈ξT,j , ω(y, 0)〉
〈ξT,j , ξj 〉 , (18)

where ξT,j is the eigenvector of BT corresponding to the eigenvalue c∗
j .

8
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Figure 9. Dependence of the growth rate (Im[c]) of the most unstable eigenvalue on the grid-point
spacing 2/(N − 1).

Figure 10. Vorticity eigenmode corresponding to the eigenvalue with largest growth rate
(N = 2001).

We computed the eigenvalues of B for various values of N. No eigenvalue presents a
dominant negative imaginary part, moreover the imaginary parts of the eigenvalues decrease
with increasing N. For the profile f (y) = y3 − 0.49y the most unstable eigenvalue is purely
imaginary. In figure 9, we give the dependence of its absolute value on the grid-point spacing
2/(N − 1). This leads to the conclusion that in the limits of our analysis either all the
eigenvalues are spurious [13] or, if a truly unstable eigenvalue is present, its growth rate is so
small that it turns out to be not relevant for the time scales here treated. A confirmation of
this is given in figure 10 where is presented the imaginary part of the eigenfunction relative
to the most unstable eigenvalue, which shows singular behaviour at y = ±0.7. All complex
eigenfunctions have a singular shape. This is at odds with the common understanding of
discrete eigenmodes, which are characterized by smoothness.

In order to gain a precise understanding of the eigenmode structure we plotted in
figure 11 the same eigenfunction of figure 10 but with a smaller range of ξ -values. It can be
noted, together with the spikes at y = ±0.7, the presence of an extended bulk component.
As shown in [1] bulk components of continuum modes can be important in the formation of a
quasimode, a vorticity perturbation which behaves in the early dynamics like an exponentially
damped wave [4].

9
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Figure 11. Close-up of the vorticity eigenmode corresponding to the eigenvalue with largest
growth rate (N = 2001).

Figure 12. Streamfunction eigenmode corresponding to the eigenvalue with largest growth rate
(N = 2001).

In figure 12 we plot the streamfunction corresponding to the vorticity eigenmode of
figure 10. As shown in the figure the dominant component of φmax is determined by the bulk
component of ξmax. The real part of the eigenmode relative to the most unstable eigenvalue
shows features very similar to those given in figures 10–12 and therefore we do not present it.

Figure 13 shows equation (17) for the profile f (y) = y3 − 0.49y and the initial condition
ω(y, 0) = cos(y) at t = 800. The results are in agreement with those of the previous section.

A deeper understanding of how the growth occurs is obtained by plotting the absolute
value of the coefficients Aj of the eigenfunctions as functions of the real part of the relative
eigenvalue. As evident from figure 14, the Aj become dominant near Re(cj ) = 0. This
confirms the resonant growth obtained from the initial-value problem where the peaks of the
solution occurred at f (yp) = 0. For a profile of the type f (y) = a + y3 − by we found that
the Aj become singular around Re(cj ) = kf (ys) (where ys is defined by f ′′(ys) = 0), which
is the phase corresponding to the points yp such as f (yp) = f (ys).

Suppression of growth occurring for initial vorticity perturbations vanishing at the
inflection point can be understood by plotting the relative (Re(cj ), |Aj |) graph. Figure 15
shows that the value of the coefficients near Re(cj ) = 0 is drastically reduced and this decrease

10
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Figure 13. Eigenmode expansion (17) evaluated at t = 800 (N = 2001).

Figure 14. Absolute value of the expansion coefficients Aj for the initial condition ω(y, 0) = cos y

(N = 2001).

0 1
0

1

2

Re(c
j
)

|A
j
|

−

Figure 15. Absolute value of the expansion coefficients Aj for the initial condition ω(y, 0) = sin y

(N = 2001).

causes the lack of growth. We note that the rapid fluctuations of |Aj | in figures 14 and 15 are
due to the degeneracy of the continuum modes which occurs in non-monotonic flows.
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We computed the eigenspectra of the profiles under study for different values of b. What
we have numerically found is that for b < 0.85 fast exponential instabilities do not occur
for any value of the wave number k. For b > 0.85 and opportune values of k powerful
Kelvin–Helmholtz like instabilities take place. These results are confirmed by the numerical
integration of the initial-value problem.

The picture arising is that a Landau pole cL leads to a saturated growth of an initial
perturbation with coefficients |Aj | peaked around Re(cL). The saturation value for the vorticity
perturbation can be found heuristically by substituting

φ(y, t) = A(y) eicLt (19)

in equation (9). A(y) is a function which can be extrapolated from the numerical results. We
obtain

[∂t − ikf (y)]ω = ikf ′′(y)A(y) eicLt . (20)

Integration of the above equation leads to the expression

ω = ikf ′′(y)A(y) eikf (y)t

∫ t

0
eicLs e−ikf (y)s ds. (21)

For f (y) = y3 − 0.49y we have a Landau frequency Re(cL) = kf (ys) = 0 and a Landau
decay rate for the streamfunction γL = Im(cL) ∼ 0.003 04. Considering that f (yp) = 0 in
yp we have

ω(yp, t) = ikf ′′(yp)A(yp)
1 − e−γLt

γL

. (22)

Substituting into the above expression k = 2 and the numerical values relative to yp = −0.7
(f ′′(−0.7) = −4.2 and Re(A(−0.7)) = −0.033) we obtain for the imaginary part of the
vorticity perturbation the following saturation value:

ωi(−0.7, t = ∞) ∼ 92, (23)

which is in good agreement with the one found in the numerical simulations (∼90).
The ratio 1−e−γLt

γL
on the right-hand side of (22) suggests the definition of a saturation time

τsat = 4.6
γL

, which is the time required to have e−γLt ≈ 1
100 . τsat will be used in the following

section to discuss the dependence of the Landau pole cL on the wave number k.
To conclude this section we emphasize that the validity of the numerical scheme here

presented was tested with the same model profiles (sin βy, Poiseuille, etc) used in the previous
section, reproducing the eigenspectra given in the existing literature. Expansion (17) for the
model profiles gives results fully consistent with those computed by the numerical integration
scheme of the previous section.

For the profile under study (f (y) = y3 − 0.49y) the range of the continuous spectrum
([−1.02, 1.02]) was correctly computed.

4. Numerical calculation of the Landau pole

In this section, we will confirm the results obtained previously, which suggested the existence
of a Landau pole with imaginary part γL ≈ 0.003 04. This will be done by numerically
computing the Landau pole using a technique developed in [14] and based on the analytical
treatment of [4]. A good review of the material is given in the appendix of [1].

Our treatment will slightly differ with the one in [14] in two respects. First, the geometry
here is flat while there was cylindrical. Second, the profile here is non-monotonic while there
was monotonic.

12
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Figure 16. Example of Landau bypass contour in the y-plane for the non-monotonic profile
f (y) = y3 − 0.49y and wave number k = 2.

Following closely the above-mentioned references, we start from equation (9).
Substituting φ(y) = φ̃(y) eict and dividing through by c − kf (y) we obtain[

∂2
y − k2 +

kf ′′(y)

c − kf (y)

]
φ̃(y, c) = 0. (24)

This equation presents a branch cut in the complex c-plane for

min
y∈[−1,1]

(kf (y)) < c < max
y∈[−1,1]

(kf (y)). (25)

The idea exposed in [4, 14] is to analytically continue φ̃(y, c) in the c-plane by deforming
the branch line in the semiplane Im(c) > 0. If the new branch line, defined by
kf (Re(y) + i Im(y)) = c, bends sufficiently above the real axis, a Landau pole may be
uncovered. In [4, 14] the profile f (y) was monotonic, therefore the anti-image of cL/k in
the complex y-plane, was a single point. In our case, being f (y) non-monotonic cL/k can
have up to three anti-images. This fact suggests that some additional care must be taken in
choosing the Landau contour in the y-plane. In our case, for example, we are looking for a
Landau pole cL ≈ i 0.003 04. Anti-images of cL through f (y) are

y1,2 ≈ ±0.7 + i 0.001 55, y3 ≈ −i 0.0031. (26)

This means that the Landau contour in the y-plane has to pass below y3 and above y1 and y2.
In other words the uncovering of cL in the c-plane creates three singularities in the y-plane,
which are pushed through the real axis in directions that depend on the value of f ′(y) at the
crossing points [15]. For the profile f (y) = y3 − 0.49y, f ′(Re(y1)) > 0 and f ′(Re(y2)) > 0
imply that the Landau contour has to pass above y1 and y2. Instead since f ′(Re(y3)) < 0 the
bypass contour passes below y3.

According to the above considerations, we have chosen a sinusoidal contour of the type
shown in figure 16 with analytical dependence

y(s) = s + iA cos 3
2πs, −1 � s � 1, (27)

A is a constant used to adjust the bending of the contour y(s). Integrated along y(s)

equation (24) becomes[
d

ds

1

y ′(s)
d

ds
− y ′(s)k2 +

ky ′(s)f ′′(y(s))

c − kf (y(s))

]
φ̃(s, c) = 0. (28)

We need three boundary conditions to solve the above eigenproblem, which are easily
determined considering that

φ̃(y, c) → sinh(k(1 + y)) as y → −1. (29)
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Figure 17. Dependence of the Landau pole on the wave number k.

In fact the above limit implies

φ̃(−1 + ε, c) = sinh[k(1 + y(−1 + ε))], (30)

d

ds
φ̃(−1 + ε, c) = ky ′(−1 + ε) cosh[k(1 + y(−1 + ε))], (31)

where ε is a positive number  1. The third condition is simply

φ̃(1, c) = 0. (32)

Equation (28) with the boundary conditions (30)–(32) can be solved numerically with various
methods such as finite element or shooting to determine the value of the Landau pole, if
existent. For the case k = 2 and f (y) = y3 − 0.49y, we obtained for cL a value in close
agreement with the one determined in the previous two sections

cL = i0.003 0423. (33)

We computed as well the dependence of the value of the Landau pole on the wave number k.
We have found that cL is proportional to k as shown in figure 17. We noted that at k ≈ 3.93
and above (we investigated up to k = 4) two Landau poles are uncovered instead of a single
one. This pair of poles are one the opposite complex conjugate of the other—if cL is one then
−c∗

L is the other. This fact is not shown in figure 17.
We conclude this section with a note on the relation between the saturation value reached

by the vorticity at yp (f (yp) = 0) and the value of the Landau pole.
Referring to equation (22), we can see that, assuming A(yp) as almost constant, the ratio

k
γL

gives the size of the maximum growth achievable. For the profile f (y) = y3 − 0.49y we

have found that k
γL

is maximum around k = 1.5. Therefore we expect to achieve maximum
vorticity growth for this value of k. This is indeed what we have obtained from the numerical
integration of the initial-value problem and from the solution of the eigenspectrum analysis,
both predicting a saturation value for the imaginary part of the vorticity of ωi(yp,∞) ≈ 110.

It is interesting to see how enstrophy and energy of the modes evolve with time. We
defined enstrophy and energy of the kth wave number component, respectively as

W =
∫ 1

−1
ω∗(y, t)ω(y, t) dy, E =

∫ 1

−1
v∗(y, t) · v(y, t) dy. (34)

Evolution of these quantities is shown in figures 18 and 19, for k = 1, k = 1.5 and k = 2.
For k below 1 the enstrophy saturates to values lower than that shown in figure 18 (for
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Figure 18. Evolution of the enstrophy for different k for the initial condition ω(y, 0) = cos y.
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Figure 19. Evolution of the energy for different k for the initial condition ω(y, 0) = cos y.

k = 0.5,Wsat ≈ 65). For k above 2 the saturation value progressively diminishes and, above
k = 3, τsat is so short that the enstrophy turns out to be almost constant at very low values (for
k = 3.9,Wsat ≈ 2).

The evolution of the energy (figure 19) shows, as expected, an exponential decrease with
a decay rate given by 2γL.

5. Summary

We have presented a linear resonant mechanism which leads to the growth of two-dimensional
inviscid vorticity in non-monotonic shear flows of the type f (y) = a + y3 − by. The vorticity
perturbation grows to a saturation value in the vicinity of the points yp where the flow
velocity f (y) is in resonance with its value at the inflection point ys . The growth mechanism
closely resembles the one found in [1], where the decay of the primary component of the
vorticity perturbation was accompanied by its moderate growth at a resonant layer determined
by the real part of a Landau pole of the system. In the present case, the growth saturates to
values of order 102 of the peak of the initial vorticity perturbation. Another peculiar feature of
the present growth is represented by its critical dependence on the value of the initial condition
at the inflection point ys . Namely, the vanishing of the initial disturbance at ys essentially
inhibits the growth mechanism. This is due to the fact that the expansion coefficients of initial
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perturbations peaked around the inflection point tend to diverge at frequencies Re(c) ∼ 0
(figure 14), while the coefficients of initial disturbances which vanish at the inflection point
stay close to moderate values (figure 15). This feature is analogous to the behaviour found in
[16]. There the local algebraic growth, occurring in the Rayleigh equation in the presence of
shear flows endowed with a stationary point of high order, was shown to depend critically on
the value of the initial disturbance at the stationary point itself.

A comment is due regarding the results of the eigenvalue analysis. In section 3 we
showed that, in the limit of our analysis, either all the complex eigenvalues are spurious or,
if a truly unstable eigenvalue was present, it would have a growth rate so small to give a
negligible contribution in the time scales relevant for the present study. Spurious eigenvalues
are characterized by the vanishing of their imaginary parts as N, the number of points by which
we approximate the interval [−1, 1], tends to infinity. In other words they would belong to the
continuous spectrum. This speculation seems to be confirmed by the fact that the associated
eigenmodes are singular. In fact, as well known, eigenfunctions corresponding to continuous
eigenvalues are singular.

The non-normal dynamics of optimal perturbations has been shown recently to play
a central role in the onset of turbulence in various fluid systems: viscous channel flows
[17, 18], inviscid and viscous unbounded constant shear flows [19], atmospheric vortices [20],
the Lamb–Oseen vortex [21], etc. The kinetic energy of such perturbations can increase by
thousands of times before asymptotically decaying to zero with time. In our case, instead, the
vorticity growth in the resonance layers is accompanied by the global exponential decay of
streamfunction and velocity components, therefore as shown in section 4 no energy growth
for perturbations pertains. On the other side there could be similarities between the growth
mechanism discussed in our study and the growth of optimal perturbations. We refer in
particular to the strong dependence of the vorticity growth on the initial perturbation shape.
Another possible point of contact could be the fact that as it occurs for optimal perturbations,
exponential decay leads ultimately to transient growth of the perturbation. However, the
equations and the profiles here studied present differences with those investigated in the
references above; this fact renders a close comparison with optimal perturbation dynamics
quite difficult. Therefore from our results we cannot draw any definitive conclusion about the
relationship between Landau pole induced saturated growth of the vorticity perturbation and
the transient energy amplification of optimal perturbations.

Due to the analogy existing between 2D inviscid incompressible fluids and 2D low-density
electron beams [4] the present vorticity growth mechanism could be checked experimentally
either with neutral fluids or with electron plasmas. As seen above the component of the
initial vorticity disturbance that drives the growth of ω in the resonance layers is situated at
the inflection points ys of the mean flow where d2

dy2 f (ys) = d
dy

�0(ys) = 0. However, as
shown in [1], the potential flow associated with an external impulse applied at the channel
boundary (y = ±1) excites vorticity perturbations only in points for which holds d

dy
�0 �= 0.

Therefore generation of initial vorticity disturbances by the application of external impulses
at the boundary it is not a suitable experimental procedure for the verification of the vorticity
growth mechanism here presented. The creation of a favourable initial vorticity disturbance
could be achieved, for example, by the application of an impulse directly at the inflection point
of the equilibrium profile. Many other, more efficient, procedures can be devised.

At last we note that, in spite of the fact that the type of equilibrium profiles studied satisfy
the Rayleigh–Fjørtoft necessary condition for instability, no fast exponential instability was
found to occur for any wave number k for b < 0.85. For b > 0.85 and opportune values of k
global exponential growth takes place.
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